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Abstract. Let XH and XK be solutions to two stochastic differential equations driven
by independent fractional Brownian motions with Hurst parameters H and K, respectively.
We study when XH and XK intersects with each other over finite time interval.

1. Introduction

Random dynamical systems are well established modeling tools for a variety of natural
phenomena ranging from physics (fundamental and phenomenological) to chemistry and
more recently to biology, economics, engineering sciences and mathematical finance. In many
interesting models the lack of any regularity of the external inputs of the differential equation
as functions of time is a technical difficulty that hampers their mathematical analysis. The
theory of rough paths has been initially developed by T. Lyons [14] in the 1990’s to provide
a framework to analyze a large class of driven differential equations and the precise relations
between the driving signal and the output (that is the state, as function of time, of the
controlled system).

Rough paths theory provides a nice framework to study differential equations driven by
Gaussian processes (see [8]). In particular, using rough paths theory, we may define solutions
of stochastic differential equations driven by a fractional Brownian motion. Consider

Xt = x+

∫ t

0

V0(Xs)ds+
d∑
i=1

∫ t

0

Vi(Xs)dB
i
s, (1)

where x ∈ Rn, V0, V1, · · · , Vd are bounded smooth vector fields on Rn and {Bt, t ≥ 0} is a d-
dimensional fractional Brownian motion with Hurst parameter H ∈ (1/4, 1). Existence and
uniqueness of solutions to the above equation can be found, for example, in [15]. In particular,
when H = 1/2, this notion of solution coincides with the solution of the corresponding
Stratonovitch stochastic differential equation. It is also clear now (cf. [1, 3, 5, 10, 4]) that
under Hörmander’s condition the law of the solution Xt has a smooth density pt(x, y) with
respect to the Lebesgue measure on Rn.

In the present work, we are interested in the mutual intersection of two independent solu-
tions to equation (1). More precisely, Suppose we have two mutually independent fractional
Brownian motions B = (B1, ..., Bd) and B̃ = (B̃1, ..., B̃d) from the same probability space
(Ω,F ,P), with Hurst parameters H and K, respectively. We assume that both H and K
are greater than 1/4. Note here that we give ourselves the flexibility that the two fractional
Brownian motions have different Hurst parameters. Let XH be the solution to equation (1)
driven by B. Assume that XK is the solution to an equation of the same type as (1), but
with a different starting point x̃ and possibly another set of vector fields Ṽi : i = 0, ..., d,
driven by the second fractional Brownian motion B̃. Clearly XH and XK are independent.
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We are interested in when these two solutions intersect with each other over the time interval
[0, 1].

The question of mutual intersection as above are usually discussed in the setting of random
fields. Standard strategy in solving this problem is to consider the random field of two
parameters Y (s, t) = (XH

s , X
K
t ) and translate the question of mutual intersection to the

question of hitting probability

When do we have P{Y hits D on [0, 1]2 } > 0 ?

Here D = {(x, x) : x ∈ Rn} is the diagonal.
The problem about hitting probabilities is important in potential theory of stochastic

processes and random fields. Usually, to solve a hitting probability problem, sophisticated
computations are expected. We refer to [6, 16] and references therein for details.

In this work, we propose a simple approach to the problem, employing current development
in the study of equation (1). The main idea is described as follows. Since XH and XK are
independent, we can freeze XH by conditioning. For a single sample path XH [0, 1](ω) =
{XH

t (ω) : 0 ≤ t ≤ 1}, one knows its Hausdorff dimension (as a subset of Rn) explicitly
in terms of H (see Theorem 3.2 below). On the other hand, it is also known that for any
bounded Borel set E ⊂ Rd the probability

P (Xt hits E for t ∈ [a, b])

can be characterized by the α-dimensional Newtonian capacity of E for α = n − 1/K
(see Theorem 3.1 below). Given the relation between Hausdorff dimension and Capacity
dimension, one should be able to draw some information on whether XK hits a particular
sample path E = XH [0, 1](ω) of XH . The question whether XK hits XH is then answered
by undoing the conditioning.

Throughout our discussion, we assume that the vector fields Vi (and Ṽi, respectively)
in equation (1) for XH (and XK , respectively) are C∞-bounded and satisfy the following
uniform ellipticity condition.

Hypothesis 1.1 (Uniform Ellipticity). The vector fields V1, . . . , Vd are said to form an
uniform elliptic system if

v∗V (x)V ∗(x)v ≥ λ|v|2, for all v, x ∈ Rn, (2)

where we have set V = (V i
j )i=1,...,n;j=1,...d and where λ designates a strictly positive constant.

Remark 1.2. Under the uniform ellipticity condition we have d ≥ n.

The main result of our investigation is reported in the following theorem.

Theorem 1.3. Consider the event

A = {XH and XK intersect each other over the interval [0, 1]}.

We have
(1) if n > 1/H + 1/K, then P(A) = 0; and
(2) if n < 1/H + 1/K, then P(A) > 0.
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The rest of the paper is organized as follows. In Section 2, we present some preliminary
material on rough path theory and stochastic differential equations driven by fractional
Brownian motions. The needed results on fractal properties of solutions to equation (1) is
summarized in Section 3. Finally, we prove our main result in Section 4.

2. preliminary material

For some fixed H > 1/4, we consider (Ω,F ,P) the canonical probability space associated
with the fractional Brownian motion (in short fBm) with Hurst parameter H. That is,
Ω = C0([0, 1]) is the Banach space of continuous functions vanishing at zero equipped with
the supremum norm, F is the Borel sigma-algebra and P is the unique probability measure
on Ω such that the canonical process B = {Bt = (B1

t , . . . , B
d
t ), t ∈ [0, 1]} is a fractional

Brownian motion with Hurst parameter H. In this context, let us recall that B is a d-
dimensional centered Gaussian process, whose covariance structure is induced by

R (t, s) := EBj
s B

j
t =

1

2

(
s2H + t2H − |t− s|2H

)
, s, t ∈ [0, 1] and j = 1, . . . , d. (3)

In particular it can be shown, by a standard application of Kolmogorov’s criterion, that B
admits a continuous version whose paths are γ-Hölder continuous for any γ < H.

2.1. Rough path and SDE driven by fBm. In this section, we recall some basic results
in rough paths theory and how a fractional Brownian motion is lifted to be a rough path.
More details can be found in [9] and [15]. For N ∈ N, recall that the truncated algebra
TN(Rd) is defined by

TN(Rd) =
N⊕
m=0

(Rd)⊗m,

with the convention (Rd)⊗0 = R. The set TN(Rd) is equipped with a straightforward vector
space structure plus a multiplication ⊗. Let πm be the projection on the m-th tensor level.
Then (TN(Rd),+,⊗) is an associative algebra with unit element 1 ∈ (Rd)⊗0.

For s < t and m ≥ 2, consider the simplex ∆m
st = {(u1, . . . , um) ∈ [s, t]m; u1 < · · · < um},

while the simplices over [0, 1] will be denoted by ∆m. A continuous map x : ∆2 → TN(Rd)
is called a multiplicative functional if for s < u < t one has xs,t = xs,u ⊗ xu,t. An important
example arises from considering paths x with finite variation: for 0 < s < t we set

xms,t =
∑

1≤i1,...,im≤d

(∫
∆m

st

dxi1 · · · dxim
)
ei1 ⊗ · · · ⊗ eim ,

where {e1, . . . , ed} denotes the canonical basis of Rd, and then define the truncated signature
of x as

SN(x) : ∆2 → TN(Rd), (s, t) 7→ SN(x)s,t := 1 +
N∑
m=1

xms,t.

The function SN(x) for a smooth function x will be our typical example of multiplica-
tive functional. Let us stress the fact that those elements take values in the strict subset
GN(Rd) ⊂ TN(Rd), called free nilpotent group of step N , and is equipped with the classical
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Carnot-Caratheodory norm which we simply denote by | · |. For a path x ∈ C([0, 1], GN(Rd)),
the p-variation norm of x is defined to be

‖x‖p−var;[0,1] = sup
Π⊂[0,1]

(∑
i

|x−1
ti
⊗ xti+1

|p
)1/p

where the supremum is taken over all subdivisions Π of [0, 1].
With these notions in hand, let us briefly define what we mean by geometric rough path

(we refer to [9, 15] for a complete overview): for p ≥ 1, an element x : [0, 1] → Gbpc(Rd) is
said to be a geometric rough path if it is the p-var limit of a sequence Sbpc(xm), where xm is
a sequence of paths over [0, 1] that have bounded variation. In particular, it is an element
of the space

Cp−var;[0,1]([0, 1], Gbpc(Rd)) = {x ∈ C([0, 1], Gbpc(Rd)) : ‖x‖p−var;[0,1] <∞}.

The existence of a geometric rough path over a fractional Brownian motion is proved in
[7].

Proposition 2.1. Let B be a fractional Brownian motion with Hurst parameter H > 1/4.
It admits a lift B as a geometric rough path of order p for any p > 1/H.

Recall the definition of a geometric rough path. Proposition 2.1 asserts that for H > 1/4,
almost surely, one can find a sequence Bm(ω) ∈ C([0, 1],Rn) with bounded variation such
that Sbpc(Bm)(ω) converges to B(ω) in ‖ · ‖p−var;[0,1]−norm. It then follows from Lyons’
continuity theorem that we can send m to infinity in

Xm
t (ω) = x+

∫ t

0

V0(Xm
s (ω))ds+

d∑
i=1

∫ t

0

Vi(X
m
s (ω))dBm,i

s (ω),

and both sides converges for all t ∈ [0, 1] and for almost all ω. The limit process Xt is called
the solution to equation (1).

3. Fractal and hitting properties of X

Let X be the solution to (1). In this section, we summarize some fractal and hitting
properties of X, which will be needed in the proof of our main result. Interested readers are
referred to [2] and [13] for more details.

For all Borel sets E ⊂ Rn, we define P(E) to be the set of all probability measures with
compact support in E. For µ ∈ P(E), we let Eα(µ) denote the α-dimensional energy of µ,
that is,

Eα(µ) :=

∫∫
Kα(|x− y|)µ(dx)µ(dy), (4)

where Kα denotes the α-dimensional Newtonian kernel, that is,

Kα(r) :=


r−α if α > 0,

log(N0/r) if α = 0,

1 if α < 0,

(5)
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where N0 > 0 is a constant. For all α ∈ R and Borel sets E ⊂ Rn, we then define the
α-dimensional capacity of E as

Capα(E) :=

[
inf

µ∈P(E)
Eα(µ)

]−1

, (6)

where by convention we set 1/∞ = 0.
The theorem below on hitting probabilities of X is proved in [2].

Theorem 3.1. Let X be the solution to equation (1) driven by a d-dimensional fBm B with
Hurst parameter H > 1/4. Fix 0 < a < b ≤ 1, M > 0, and η > 0 Then whenever V1, . . . , Vd
satisfy the uniform ellipticity condition (2), there exists two strictly positive constants c1, c2

depending on a, b,H,M, n, η such that for all compact sets E ⊆ [−M ,M ]n,

c1 Capn− 1
H

(E) ≤ P (X([a, b]) ∩ E 6= ∅) ≤ c2 Capn− 1
H
−η(E). (7)

Denote by dimH(E) the Hausdorff dimension of E. The following theorem is borrowed
from [13].

Theorem 3.2. Let X be the same as in the previous theorem. We have almost surely

dimHX([0, 1]) = min

{
n,

1

H

}
.

To close the exposition in this section, we remark that the capacity dimension of E is
defined by

dimC(E) = sup{α > 0 : Capα(E) > 0}.
It is know by Frostman’s theorem (cf. [11] or [12])

dimHE = dimC(E),

for every compact subset E of Rn.

4. Proof of Main result

We prove Theorem 1.3 in this section. Consider the event

A = {XH and XK intersect each other over the interval [0, 1]}.
We aim to show that: (1) If n > 1/H + 1/K, then P(A) = 0; and (2) if n < 1/H + 1/K,
then P(A) > 0.

Let XH [0, 1] be the sample path of XH over the interval [0, 1]. By Theorem 3.2, there
exists Ω1 ⊂ Ω with P(Ω) = 1 such that

dimHX
H [0, 1](ω) = min

{
n,

1

H

}
, for all ω ∈ Ω1.

In the discussion below, we fix an ω ∈ Ω1 and consider the single sample path XH [0, 1](ω).
Clearly, it is a compact set in Rn, as the image of the compact time interval [0, 1] under the
continuous map XH

· (ω) : [0, 1]→ Rn. By Frostman’s theorem,

dimC X
H [0, 1](ω) = dimHX

H [0, 1](ω) = min

{
n,

1

H

}
.
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Recall that in the above dimC E is the capacity dimension of E.
Set

E = XH [0, 1](ω) ⊂ Rn.

We try to see when XK has positive probability to hit this particular E. By Theorem 3.1,
we have for any ε > 0, there exist positive constants c1 and c2 such that

c1Capn− 1
K

(E) ≤ P{XK visit E during time interval [a, 1]} ≤ c2Capn− 1
K
−ε(E).

Where a > 0 is a very small number. By the definition of capacity dimension, the following
is obvious.
Case 1: Suppose n > 1/H, in which

dimC E =
1

H
.

We have
(a) If n−1/K > 1/H; that is 1/K+1/H < n, then for all small ε (such that n−1/K−ε >

1/H),
Capn− 1

K
−εE = 0.

Hence
P{XK hits E during time interval [a, 1]} = 0.

(b) If n− 1/K < 1/H; that is, 1/K + 1/H > n, then

Capn− 1
K
E > 0.

Hence
P{XK visit E during time interval [a, 1]} > 0.

Case 2: Suppose n ≤ 1/H, in which

dimC E = n.

Obviously, we have n− 1/K < n and therefore

Capn− 1
K
E > 0.

Hence
P{XK visit E during time interval [a, 1]} > 0.

To summarize, we have
(i) If n > 1/H + 1/K, then almost surely XK will not hit E on [a, 1];
(ii) If n < 1/H + 1/K, the with positive probability XK will hit E on [a, 1].

Finally, for each small a > 0 consider the event

Aa = {XH [0, 1] ∩XK [a, 1] 6= ∅}.
Let BXH be the σ-field generated by XH . We have

P(Aa) = E[P(Aa|BXH )].

Conditioning on BXH is equivalent to freezing a sample path of XH . Since XK and XH are
independent, the argument above implies that

(i) If n > 1/H + 1/K, then P(Aa|BXH ) = 0 almost surely;
(ii) If n < 1/H + 1/K, then P(Aa|BXH ) > 0 almost surely.
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Hence we conclude that: (i) If n > 1/H+1/K, we have P(Aa) = 0; and (ii) if n < 1/H+1/K,
then P(Aa) > 0. The proof is thus completed by observing that P(A) = lima→0 P(Aa).
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